Role of 5,6-epoxyeicosatrienoic acid in the regulation of newborn piglet pulmonary vascular tone.
نویسندگان
چکیده
We examined the responses of newborn piglet pulmonary resistance arteries (PRAs) to 5,6-epoxyeicosatrienoic acid (5,6-EET), a cytochrome P-450 metabolite of arachidonic acid. In PRAs preconstricted with a thromboxane A(2) mimetic, 5,6-EET caused a concentration-dependent dilation. This dilation was partially inhibited by the combination of charybdotoxin (CTX) and apamin, inhibitors of large and small conductance calcium-dependent potassium (K(Ca)) channels, and was abolished by depolarization of vascular smooth muscle with KCl. Disruption of the endothelium significantly attenuated the dilation, suggesting involvement of one or more endothelium-derived vasodilator pathways in this response. The dilation was partially inhibited by nitro-L-arginine (L-NA), an inhibitor of nitric oxide synthase (NOS), but was unaffected by indomethacin, a cyclooxygenase (COX) inhibitor. The combined inhibition of NOS and K(Ca) channels with L-NA, CTX, and apamin abolished 5,6-EET-mediated dilation. Similarly, combined inhibition of NOS and COX abolished the response. We conclude that 5,6-EET is a potent vasodilator in newborn piglet PRAs. This dilation is mediated by redundant pathways that include release of nitric oxide (NO) and COX metabolites and activation of K(Ca) channels. The endothelium dependence of this response suggests that 5,6-EET is not itself an endothelium-derived hyperpolarizing factor (EDHF) but may induce the release of one or more endothelium-derived relaxing factors, such as NO and/or EDHF.
منابع مشابه
Predominant role of vasoconstrictors over dilatators derived from arachidonic acid in hypoxic pulmonary vasoconstriction.
Prostanoids derived from arachidonic acid (AA) have been shown to play a permissive role in the regulation of vascular tone and wall tension. Conventionally, epoxyeicosatrienoic acids (EETs) and prostacyclin have been considered as dilatators, whereas thromboxane (TX) and hydroxyeicosatetraenoic acid (HETE) were considered as vasoconstrictors. However, the role of these prostanoids in the media...
متن کاملEpoxyeicosatrienoic acids constrict isolated pressurized rabbit pulmonary arteries.
Little information is available regarding the vasoactive effects of epoxyeicosatrienoic acids (EETs) in the lung. We demonstrate that 5, 6-, 8,9-, 11,12-, and 14,15-EETs contract pressurized rabbit pulmonary arteries in a concentration-dependent manner. Constriction to 5,6-EET methyl ester or 14,15-EET is blocked by indomethacin or ibuprofen (10(-5) M), SQ-29548, endothelial denuding, or submax...
متن کامل5,6-Epoxyeicosatrienoic acid reduces increases in pulmonary vascular resistance in the dog.
We recently reported that canine pulmonary microsomes metabolize arachidonic acid to all four regioisomeric epoxyeicosatrienoic acids (EET). 5,6-EET dilates blood vessels in several nonpulmonary vascular beds, often in a cyclooxygenase-dependent manner. The present study was designed to determine whether 5,6-EET can decrease pulmonary vascular resistance (PVR) in the intact pulmonary circulatio...
متن کاملThe Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone
Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediat...
متن کامل20-hydroxyeicosatetraenoic acid is a vasoconstrictor in the newborn piglet pulmonary microcirculation.
20-Hydroxyeicosatetraenoic acid (20-HETE), a cytochrome p-450 metabolite of arachidonic acid, is a vasoconstrictor in the systemic circulation and a vasodilator in the adult pulmonary circulation. Little is known about the vasoactive properties of 20-HETE in the newborn pulmonary circulation. The objectives of this study were to determine the vascular effects of 20-HETE and to explore the signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 283 2 شماره
صفحات -
تاریخ انتشار 2002